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Lecture 5: Quantum Merlin Arthur (QMA) and strong error
reduction

“I have had my results for a long time, but I do not yet know how to arrive at them.”
— Carl F. Gauss.

“If only I had the theorems! Then I should find the proofs easily enough.”
— Georg B. Riemann.
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Introduction. We have thus far defined BQP, studied the task of “solving” linear systems, and shown that
matrix inversion is BQP-complete. We now wish to define a quantum analogue of NP. This is unfortunately
a somewhat delicate issue; indeed, there are almost as many known quantum generalizations of NP as Snow
White had dwarves — there’s QMA, QMA1, QMA(2), QCMA, StoqMA, and NQP. With this said, there is
a de facto definition of “quantum NP” used by the community: Quantum Merlin Arthur (QMA).

In this lecture, we begin by defining Merlin Arthur (MA) and Quantum Merlin Arthur (QMA). We then
study the surprising strong error reduction property of QMA. Finally, we close by discussing the relationship
of QMA to known complexity classes. As suggested by the opening quotes of this lecture, a key theme will
be the power of proofs (particularly quantum proofs); as with NP, these proofs will in general be hard to
produce, but easy to verify.

1 Quantum Merlin Arthur (QMA)

Just as PromiseBPP was the correct class to generalize to BQP, to define QMA we begin with the promise-
problem probabilistic generalization of NP, PromiseMA.

Definition 1 (PromiseMA). A promise problem A = (Ayes, Ano, Ainv) is in PromiseMA if there exists a
(deterministic) TM M and fixed polynomials p, s, r : N 7→ R+, such that for any input x ∈ {0, 1}n, M takes

in “proof” y ∈ {0, 1}p(n) and string z ∈ {0, 1}s(n), halts in at most O(r(n)) steps, and:

• (Completeness/YES case) If x ∈ Ayes, there exists a proof y ∈ {0, 1}p(n), such that for at least 2/3 of

the choices of z ∈ {0, 1}s(n), M accepts.

• (Soundness/NO case) If x ∈ Ano, then for all proofs y ∈ {0, 1}p(n), at most 1/3 of the choices of

z ∈ {0, 1}s(n) cause M to accept.

• (Invalid case) If x ∈ Ainv, then M may accept or reject arbitrarily.
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Exercise. How might we define Merlin-Arthur (MA), instead of PromiseMA (i.e. how does the definition
above change if we drop the promise)?

Exercise. Show that the completeness and soundness parameters of 2/3 and 1/3, respectively, can be
amplified without loss of generality to 1− 2−n and 2−n, respectively. How many copies of the proof y suffice
for this amplification?

The quantum analogue of PromiseMA which we focus on in this lecture is Quantum Merlin Arthur
(QMA) (which, again, is really PromiseQMA, just as BQP is really PromiseBQP).

Definition 2 (Quantum Merlin Arthur (QMA)). A promise problem A = (Ayes, Ano, Ainv) is in QMA if
there exists a P-uniform quantum circuit family {Qn} and polynomials p, q : N 7→ N satisfying the following
properties. For any input x ∈ {0, 1}n, Qn takes in n+ p(n) + q(n) qubits as input, consisting of the input x
on register A, p(n) qubits initialized to a “quantum proof” |ψ〉 ∈ (C2)⊗p(n) on register B, and q(n) ancilla
qubits initialized to |0〉 on register C. The first qubit of register C, denoted C1, is the designated output qubit,
a measurement of which in the standard basis after applying Qn yields the following:

• (Completeness/YES case) If x ∈ Ayes, there exists proof |ψ〉 ∈ (C2)⊗p(n), such that Qn accepts with
probability at least 2/3.

• (Soundness/NO case) If x ∈ Ano, then for all proofs |ψ〉 ∈ (C2)⊗p(n), Qn accepts with probability at
most 1/3.

• (Invalid case) If x ∈ Ainv, Qn may accept or reject arbitrarily.

Exercise. If we replace the quantum proof |ψ〉 with a classical proof y ∈ {0, 1}p(n) in the definition of
QMA, do we recover PromiseMA?

A few comments on QMA are in order:

1. Weak error reduction. Similar to PromiseMA, parallel repetition suffices to amplify the QMA
completeness and soundness parameters to 1 − 2−n and 2−n, respectively. However, the proof of this
fact is not entirely trivial.

Exercise. Suppose the QMA prover sends k copies of its proof, |ψ〉, instead of a single copy. On
the jth copy of the proof, the verifier runs the verification circuit Qn. Finally, the verifier measures
the output qubits of all runs of Qn, takes a majority vote of the resulting bits, and accepts if and
only if the majority function yields 1. Prove that this procedure indeed amplifies the completeness
and soundness parameters for QMA. (Hint: In the NO case, a cheating prover is not obligated to send
k copies of some state |ψ〉 in tensor product, but rather can cheat by sending a large entangled state
|φ〉 ∈ (C2)⊗k·p(n) across all k proof registers. Why does entanglement across proofs not help the prover
in the NO case?)

Observe we have denoted the use of parallel repetition above as weak error reduction. This is because
the amplification step blows up the size of the proof register. Naively, one may expect this blowup to
be necessary, since a priori it seems we cannot “reuse” the quantum proof |ψ〉 — indeed, the QMA
verifier’s measurement of its output qubit disturbs its quantum state, and the no-cloning theorem says
the verifier cannot sidestep this by simply copying its input proof |ψ〉 before verifying it. Nevertheless,
it turns out that amplification without a blowup in proof size is possible — this is called strong error
reduction (Section 2), a simple and elegant application of which is to show that QMA ⊆ PP (Section 3).
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2. Pure versus mixed proofs. We have assumed the proof |ψ〉 in QMA to be a pure state, as opposed
to a mixed state. Let us now reformulate the optimal acceptance probability of the quantum verifier Qn
as an eigenvalue problem; along the way, we will not only see that the “pure state proof” assumption is
without loss of generality, but the reformulation we derive will prove crucial in our analysis of Section 2.

Let Qn be the circuit from Definition 2, acting on n+ p(n) + q(n) qubits. Recall that A,B,C denote
the input, proof, and ancilla registers, respectively, and C1 the designated output qubit of Qn. Then,
the probability that Qn accepts proof |ψ〉 is

Pr[accept] =
∥∥ |1〉〈1|C1

Qn|x〉A ⊗ |ψ〉B ⊗ |0 · · · 0〉C
∥∥2
2

= 〈x|A ⊗ 〈ψ|B ⊗ 〈0 · · · 0|CQ†n|1〉〈1|C1
Qn|x〉A ⊗ |ψ〉B ⊗ |0 · · · 0〉C

= Tr
[(
〈x|A ⊗ IB ⊗ 〈0 · · · 0|CQ†n|1〉〈1|C1

Qn|x〉A ⊗ IB ⊗ |0 · · · 0〉C
)
|ψ〉〈ψ|B

]
= Tr(Px|ψ〉〈ψ|), (1)

where the third statement follows by cyclicity of the trace, the fourth via identity Tr(MA,BNA⊗ IB) =
Tr(TrB(MA,B)NA), and the fifth by defining for convenience

Px := 〈x|A ⊗ IB ⊗ 〈0 · · · 0|CQ†n|1〉〈1|C1
Qn|x〉A ⊗ IB ⊗ |0 · · · 0〉C .

Henceforth, we shall abuse terminology by refering to Px as the POVM1 for verifier Qn.

Exercise. What space does Px act on?

Exercise. Prove Px � 0. (Hint: Prove first that if A � 0, then BAB† � 0 for any matrix B � 0;
the proof will be easier if you choose the “right” definition of positive semi-definiteness to work with.
Second, recall the partial trace preserves positivity2.)

Now we are ready to address the question: What happens if we consider a mixed proof ρ in place of a
pure state |ψ〉〈ψ|?

Exercise. Prove that for any density operator ρ =
∑
i pi|ψi〉〈ψi|, there exists an i such that Tr(Pxρ) ≤

Tr(Px|ψi〉〈ψi|). Conclude that, without loss of generality, quantum proofs in Definition 2 can be pure
states.

Finally, we stated earlier that the optimal acceptance probability can be reformulated as an eigenvalue
problem. Indeed, the optimal acceptance probability over all proofs |ψ〉 is now

max
unit vectors |ψ〉∈(C2)⊗p(n)

〈ψ|Px|ψ〉 = λmax(Px),

attained by any eigenvector |ψ〉 of Px with eigenvalue λmax(Px).

1Formally, POVM stands for Positive-Operator Valued Measure, and it normally denotes an alternate approach for modelling
measurements. Specifically, a POVM P acting on n qubits is a set of operators P = {P1, . . . , Pk} for some k > 0, such that
Pi � 0 and

∑
i Pi = I. As with projective measurements, each i denotes a distinct outcome of the measurement encoded by P ,

and the probability of outcome i is Tr(Piρ) when measuring state ρ. Unlike projective measurements, we do not require that
PiPj = 0 for i 6= j; in this sense, POVMs generalize projective measurements. (Note that also unlike projective measurements,
the postmeasurement state upon obtaining outcome i is no longer specified by PiρPi/Tr(ρPi).) In the context of a QMA verifier
Qn, we may view the application of Qn and subsequent measurement of the output qubit of Qn in the standard basis as a
POVM consisting of two elements: P = {I − Px, Px} (since the measurement has only two outputs, |0〉 or |1〉, respectively).
Since this two-outcome POVM P is fully specified by Px, for simplicity we choose to abuse terminology and refer to P by Px.

2The partial trace is an example of a completely positive map from operators to operators; the fancy name for maps from
operators to operators is a superoperator. We have not yet developed the formal framework for discussing such “superoperators”,
but for now it suffices to note that the partial trace correctly maps density operators to density operators.
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Exercise. Prove the equality above using the Courant-Fischer variational characterization of eigen-
values. The latter states: Let A ∈ Herm(CN ) have eigenvalues λ1 ≤ · · · ≤ λN . Then,

λk = min
subspaces S ⊆ CN of dimension k

max
unit vectors |ψ〉 ∈ S

〈ψ|A|ψ〉.

2 Strong error reduction for QMA

In the setting of PromiseMA, a previous exercise essentially asked you to show that at given a single copy
of proof y, the completeness and soundness parameters of the PromiseMA verifier could be amplified to
exponentially close to 1 and 0, respectively. Quantumly, one might naively expect an analogous statement
to be false — a quantum verifier measures and hence disturbs its state, so how can it “reuse” its proof,
|ψ〉? A simple solution would be for the quantum verifier to create multiple copies of |ψ〉 before beginning
its verification; unfortunately, the quantum no-cloning theorem rules this out. The following theorem hence
comes as a surprise.

Theorem 3 (Strong error reduction for QMA). Let Qn be a QMA verifier for promise problem A =
(Ayes, Ano, Ainv), where we assume the terminology of Definition 2. Then, for any polynomial r : N 7→ N,
there exists a polynomial-time deterministic TM mapping Qn to a (polynomial-size) quantum circuit Rn with
the following properties for any input x ∈ {0, 1}n:

• (Completeness/YES case) If x ∈ Ayes, there exists proof |ψ〉 ∈ (C2)⊗p(n), such that Rn accepts with
probability at least 1− 2−r(n).

• (Soundness/NO case) If x ∈ Ano, then for all proofs |ψ〉 ∈ (C2)⊗p(n), Rn accepts with probability at
most 2−r(n).

• (Invalid case) If x ∈ Ainv, Rn may accept or reject arbitrarily.

It is crucial to note that both Qn and Rn take in the same number of proof qubits, p(n).

Remark. As with weak error reduction, Theorem 3 holds even if the completeness parameter c(n) and
soundness parameter s(n) for Qn satisfy c(n)− s(n) ≥ t(n) for some fixed polynomial t : N 7→ N.

2.1 Intuition: A spinning top

To most easily see the intuition behind the proof of Theorem 3, assume Qn has completeness 1, i.e. in the
YES case, there exists a proof |ψ〉 accepted by Qn with certainty. Assume first that x ∈ Ayes. There are two
high-level steps to the amplification procedure:

1. Run the verification. Apply Qn to obtain

|φ〉 = Qn|x〉A|ψ〉B |0 · · · 0〉C ∈ (C2)⊗n+p(n)+q(n). (2)

Since x ∈ Ayes and Qn has perfect completeness, we know

|φ〉 = |1〉C1
|φ′〉 for some unit vector |φ′〉 ∈ (C2)⊗n+p(n)+q(n)−1.

Thus, if we measure the output qubit, C1, in the standard basis via projectors Πaccept = |1〉〈1|,Πreject =
|0〉〈0| ∈ L(C2), we not only obtain outcome Πaccept with certainty, but the postmeasurement state is
Πaccept
C1

|φ〉 = |φ〉. In other words, the measurement does not disturb the output of Qn.

2. Run the verification in reverse. Since measuring |φ〉 did not disturb it, applying Qn in reverse now
trivially reverts us to our initial state:

Q†n
(
Πaccept
C1

|φ〉
)

= Q†n|φ〉 = Q†n (Qn|x〉A|ψ〉B |0 · · · 0〉C) = |x〉A|ψ〉B |0 · · · 0〉C .
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If we now measure projectors3 Πreset = |x〉〈x|A⊗|0 · · · 0〉〈0 · · · 0|A,C ,Πnew = I−Πreset ∈ L((C2)⊗n+q(n)),

we again leave the state invariant, i.e. with probability 1 we obtain outcome Πreset, and the postmea-
surement state satisfies

Πreset|x〉A|ψ〉B |0 · · · 0〉C = |x〉A|ψ〉B |0 · · · 0〉C .

Note that we may repeat this procedure as many times as we like, and the outcomes will always be the same.
This is akin to a perfectly spinning top — if we think of the each application of the amplification procedure
as giving the top a supplemental twirl, the top will continue to spin blissfully along in a “steady state”.

The interesting part is now the NO case. Here, in Step 1 of the amplification procedure above, since
proof |ψ〉 is accepted with probability at most 1/3, we know |φ〉 has form

|φ〉 = α0|0〉C1
|(φ′)⊥〉+ α1|1〉C1

|φ′〉

for some orthonormal unit vectors |φ′〉, |(φ′)⊥〉 ∈ (C2)⊗n+p(n)+q(n)−1, |α0|2+ |α1|2 = 1, and |α1|2 ≤ 1/3. The
last of these properties guarantees that if we are lucky enough to measure |1〉 in C1, the postmeasurement
collapse will disturb |φ〉 greatly (since most of the weight of |φ〉 is on |0〉C1). This, in turn, suggests that
when we now run Step 2 by inverting Qn and measuring {Πreset,Πnew}, we will obtain outcome Πnew with
non-trivial probability, and again disturb our state greatly. And applying these two steps repeatedly will
presumably amplify the disturbances further. This is analogous to saying that if we start with a top spinning
with a slight wobble, each twirl we perform will further amplify the wobble until the top spins out of control.

2.2 Proof of strong error reduction

While Section 2.1 gave intuition as to why the amplification procedure might work, a formal analysis reveals
the “motion of our top” can be tracked in a very elegant and precise fashion, even if we drop the assumption
of perfect completeness.

Proof of Theorem 3. We begin by following Section 2.1. Let Qn be a QMA verifier and x ∈ {0, 1}n an input
string. For brevity, we henceforth simply write Q for Qn. To ease the analysis, we also rename our projectors

S0 := Πnew, S1 := Πreset, E0 := Πreject, E1 := Πaccept, (3)

where S in Si stands for “start” (since this measurement is on the start state) and Ei stands for “end” (since
this measurement is on the end state).

The new verification procedure. The new circuit Rn (henceforth R for brevity) acts as follows.

1. Set i = t = 0.

2. While i ≤ N :

(a) (Run the verification) Apply Q and measure output qubit C1 with respect to {E0, E1}. If the
outcome is Ej , set yi = j ∈ {0, 1}, and increment i.

(b) (Run the verification in reverse) Apply Q† and measure input and ancilla registers A and C with
respect to {S0, S1}. If the outcome is Sj , set yi = j ∈ {0, 1}, and increment i.

3. (Postprocessing) If the number of indices i ∈ {0, . . . , N − 1} such that yi = yi+1 is at least N/2, accept.
Otherwise, reject.

It suffices to set N = 8r(n)/9. Note the mapping from Q to V takes time polynomial in n.

Exercise. How many times does the while loop above run with respect to N?

3For clarity, the superscript for Πreset means the A and C registers are reset to their original states |x〉 and |0 · · · 0〉,
respectively, and for Πnew means the registers are set to a “new” start state.
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Correctness. If we are in a YES case with perfect completeness, it is clear in Step 3 above that yi = yi+1

for all i ∈ {0, . . . , N − 1}. The aim is thus to show a similar statement for general YES (resp. NO) cases;
that we are more likely to maintain (resp. flip) the value of yi in setting yi+1 in the YES (resp. NO) case,
thus leading to the correct answer with high probability in Step 3.

The starting point for the formal analysis is Equation (1), which said the probability that Q accepts
proof |ψ〉 is Tr(Px|ψ〉〈ψ|), for positive-semidefinite operator

Px := 〈x|A ⊗ IB ⊗ 〈0 · · · 0|CQ†E1Q|x〉A ⊗ IB ⊗ |0 · · · 0〉C .

It turns out that if we restrict our attention to eigenvectors |ψ〉 of Px, we obtain a clean closed form solution.

Closed form solution when |ψ〉 is an eigenvector of Px. In the case when |ψ〉 is an eigenvector of Px, we can
exactly write down the acceptance probability of |ψ〉 by R, and this will turn out to suffice for the entire
correctness analysis.

Lemma 4. Suppose |ψ〉 is an eigenvector of Px accepted by Q with probability p. Then, for any i ∈
{0, . . . , N − 1}, Pr[yi = yi+1] = p. (Thus, Pr[yi 6= yi+1] = 1− p.)

The magic of Lemma 4 is that even though a priori the action of R on |ψ〉 seems difficult to predict, when
|ψ〉 is an eigenvector of Px, each step 2(a) and 2(b) of R is just a Bernoulli trial4: Independently of all
previous measurement outcomes, with probability p we don’t flip our bit, and with probability 1− p we do
flip our bit. This means we can later apply powerful tail bounds like the Chernoff bound to analyze the
acceptance probability of R on eigenvectors of |ψ〉.

Proof of Lemma 4. Assume Px|ψ〉 = p|ψ〉 for 0 < p < 1.

Exercise. Prove the claim in the setting p = 0 and p = 1.

Recall from Equation (3) that S1 and E1 denote successful projections at the start and end of verification
(i.e. onto the original input x and all-zeroes ancilla, and onto the accepting output qubit, respectively), and
S0 = I − S1 and E0 = I − E1. Define for brevity

|φ〉 := |x〉A|ψ〉B |0 · · · 0〉C and Γ := S1Q
†E1QS1.

A key identity is now the following.

Exercise. Prove that
Γ|φ〉 = S1Q

†E1QS1|φ〉 = p|φ〉. (4)

Why must we include projectors S1 in the definition of Γ to make this a well-defined equality?

To show the claim, we trace through the first iteration of the while loop of R.

• The first run of Step 2(a) applies Q to |ψ〉. Since E0 + E1 = I, this step hence performs mapping

|φ〉 → Q|φ〉 = E0Q|φ〉+ E1Q|φ〉.

If we now measure {E0, E1}, we collapse to state

|e1〉 :=
E1Q|φ〉
‖E1Q|φ〉 ‖2

with probability ‖E1Q|φ〉 ‖22 = 〈φ|Q†E1Q|φ〉 = p.

4Recall from probability theory that Bernoulli trials refer to independently repeating a two-outcome sampling experiment.
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Exercise. Why is 〈φ|Q†E1Q|φ〉 = p? (Hint: What is S1|φ〉?)

Using the identity E0 = I − E1, we analogously collapse to

|e0〉 :=
E0Q|φ〉
‖E0Q|φ〉 ‖2

with probability ‖E0Q|φ〉 ‖22 = 〈φ|Q†E0Q|φ〉 = 1− 〈φ|Q†E1Q|φ〉 = 1− p.

Note that together, these statements imply

Q|φ〉 =
√

1− p|e0〉+
√
p|e1〉. (5)

• After Step 2(a), we have either |e0〉 or |e1〉. Step 2(b) now applies Q†, yielding one of two possible
transitions:

Q†|e1〉 = S0Q
†|e1〉+ S1Q

†|e1〉 (6)

Q†|e0〉 = S0Q
†|e0〉+ S1Q

†|e0〉 (7)

We may simplify each term on the right hand side as:

S1Q
†|e1〉 = S1Q

†E1Q|φ〉√
p

=
1
√
p

Γ|φ〉 =
√
p|φ〉 (8)

S0Q
†|e1〉 = S0Q

†E1Q|φ〉√
p

=
1
√
p
S0Q

†E1Q|φ〉 (9)

S1Q
†|e0〉 = S1Q

†E0Q|φ〉√
1− p

=
1√

1− p
(|φ〉 − Γ|φ〉) =

√
1− p|φ〉 (10)

S0Q
†|e0〉 = S0Q

†E0Q|φ〉√
1− p

=
1√

1− p
(
S0|φ〉 − S0Q

†E1Q|φ〉
)

= − 1√
1− p

S0Q
†E1Q|φ〉. (11)

Exercise. Prove each of the four statements above. (Hint: Use the fact that E0 +E1 = I. Also, why
is S0|φ〉 = 0?)

Exercise. What is
∥∥S0Q

†E1Q|φ〉
∥∥
2
?

Exercise. Prove that after we measure the right hand side of Equation (6) with {S0, S1}, we obtain
S1 with probability p and S0 with probability 1 − p. Similarly, measuring the right hand side of
Equation (7) with S0, S1 yields S0 with probability p and S1 with probability 1− p.

Exercise. Conclude from the last exercise that after the first iteration of the while loop, y1 = y2
with probability p. Accordingly, y1 6= y2 with probability 1− p.

This is precisely the behavior we are seeking. In sum, the analysis of Step 2(b) yields the following.

Exercise. Define |s0〉 := S0Q
†E1Q|φ〉

‖S0Q†E1Q|φ〉 ‖2
and |s1〉 := |φ〉. Prove the following:

Q†|e0〉 = −√p|s0〉+
√

1− p|s1〉
Q†|e1〉 =

√
1− p|s0〉+

√
p|s1〉.
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Exercise. Prove that Q|s0〉 = −√p|e0〉+
√

1− p|e1〉 ∈ Sv. (Hint: Use Equation (4).)

It will now be fruitful to step back and see the bigger picture which is emerging. Define Sv :=
Span(|e0〉, |e1〉) and Sw := Span(|s0〉, |s1〉). Then, our analysis above showed that Q maps Sv into Sw.
Conversely, Q† maps Sw back into Sv. In fact, Sv = Sw, as you will now show.

Exercise. Prove that {|e0〉, |e1〉} is an orthonormal set.

Exercise. Prove that {|s0〉, |s1〉} is an orthonormal set.

Exercise. Prove that Sv = Sw.

In other words, the evolution of R is entirely confined in a two-dimensional space: S := Sv = Sw. In space
S, our analysis reveals the entire action of Q:

Q|s0〉 = −√p|e0〉+
√

1− p|e1〉
Q|s1〉 =

√
1− p|e0〉+

√
p|e1〉

Q†|e0〉 = −√p|s0〉+
√

1− p|s1〉
Q†|e1〉 =

√
1− p|s0〉+

√
p|s1〉.

We are now ready to finish the proof of Lemma 4.

Exercise. Observe that Si|si〉 ∝ |si〉, and Si|si⊕1〉 = 0. Similarly, Ei|ei〉 ∝ |ei〉, and Ei|ei⊕1〉 = 0. Why
can we now conclude the analysis for a single loop iteration suffices to prove all of Lemma 4?

With Lemma 4 in hand, we have a clean characterization of how R behaves on any proof |ψ〉 which is an
eigenvector of Px. We are now ready to complete the proof of Theorem 3.

Correctness proof for YES case. In the YES case, from Section 1 we know that the optimal proof for Q is
an eigenvector |ψ〉 of Px accepted with probability p ≥ 2/3. Thus, by Lemma 4, for each i ∈ {0, . . . , N − 1},
yi = yi+1 with probability at least 2/3. By the Chernoff bound (which we may apply since Lemma 4 reduces
us to Bernoulli trials), the claim now follows.

Correctness proof for NO case. In the NO case, the optimal proof for Q is an eigenvector |ψ〉 of Px accepted
with probability p ≤ 1/3. Unfortunately, here we cannot proceed as in the YES case by assuming a cheating
prover sends an eigenvector of Px as a proof. Luckily, it turns out that by applying a similar, but slightly
more general, analysis to that above, one can explicitly show the desired bound for the NO case as well. We
omit this additional analysis.

3 Relationship to other classes

3.1 The many cousins of QMA

There are a number of variants of QMA, the most prominent of which are arguably the following (in no
particular order).

• One-Sided Error Quantum Merlin Arthur (QMA1). QMA with perfect completeness, i.e. in
the YES case there exists a proof accepted with probability 1.
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• Quantum Classical Merlin Arthur (QCMA). QMA, but with a classical proof y ∈ {0, 1}p(n).

• Stoquastic Merlin Arthur (StoqMA). QMA, except (1) the ancilla qubits are allowed to be
initialized (independently) to either |0〉 or |+〉, (2) the verification circuit consists solely of reversible
classical gates, and (3) the final single-qubit measurement is in the X basis (i.e. {|+〉, |−〉}.

• Quantum Merlin Arthur with Two Proofs (QMA(2)) QMA, except the proof is promised to
be a tensor product of two proofs, i.e. |ψ〉 = |φ1〉 ⊗ |φ2〉 for some |φ1〉, |φ2〉.

Again, despite the nomenclature, each of these is a class of promise problems, not a class of languages. Here
is what is known about the relationships between these:

• BQP ⊆ QCMA ⊆ QMA1 ⊆ QMA ⊆ QMA(2) ⊆ NEXP.

Exercise. Which of these inclusions are trivial? Why?

Exercise. Why is it not clear that QMA = QMA(2)?

Two remarks: (1) The inclusion QCMA ⊆ QMA1 follows because one can show QCMA = QCMA1, i.e.
without loss of generality we may assume QCMA has perfect completeness. The analogous statement
is not known for QMA. (2) The containment QMA(2) ⊆ NEXP is, remarkably and sadly, the best
trivial upper bound on QMA(2). This leaves quite a chasm between QMA and QMA(2), with the
former contained in5 PP. The only known non-trivial6 upper bound on QMA(2) is

QMA(2) ⊆ QΣ3 ⊆ NEXP,

where QΣ3 is a quantum analogue7 of Σp
3 , the third level of PH. It is not yet clear if this should be

construed as strong evidence that QMA(2) 6= NEXP; not much is known about QΣ3, and it is entirely
possible that QMA(2) = QΣ3 = NEXP. On the other hand, if the study of the classical analogue
of QΣ3 is any guide, it would suggest QMA(2) 6= QΣ3 (and hence QMA(2) 6= NEXP), as classically
alternating quantifiers are strongly believed to add power to a proof system (otherwise, PH collapses).

Exercise. Why would QMA(2) = NEXP imply that alternating quantifiers do not strictly increase
the power of a QMA(2) proof system?

• As for StoqMA, it is a rather strange fellow — in terms of lower bounds, it is the only “quantum”
cousin of QMA which is not believed to contain BQP. Indeed, StoqMA ⊆ PH (more precisely, it is in
Arthur-Merlin (AM)), whereas it is believed BQP is not contained in PH. In terms of upper bounds, it
is not clear whether StoqMA ⊆ QCMA; this because the former has a quantum proof but “classical”
verification, whereas the latter has a classical proof but quantum verification. In fact, it is not even
known whether weak error reduction holds for StoqMA, since the final X-basis measurement appears
to prevent the standard “parallel repetition plus majority-vote” technique.

Upper bounds on QMA. The most “mainstream” upper bound on QMA is QMA ⊆ PP. However, there
are two strictly stronger known bounds (assuming standard complexity theoretic conjectures):

5Recall PP ⊆ PSPACE ⊆ EXP ⊆ NEXP.
6That QMA(2) ⊆ QΣ3 is trivial; it is the containment QΣ3 ⊆ NEXP which is non-trivial.
7Roughly, in a YES instance for QΣ3, there is a proof ρ1, such that for all proofs ρ2, there exists a ρ3 leading the quantum

verifier to accept (ρ1, ρ2, ρ3) with probability at least 2/3. Analogously for a NO instance, for all proofs ρ1, there is a proof ρ2,
such that for all ρ3 the quantum verifier accepts with probability at most 1/3. All proofs are polynomial-size and allowed to
be mixed. In strong contrast to QMA, it is not clear whether the proofs can be assumed pure without loss of generality.
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1. QMA ⊆ A0PP ⊆ PP. Rather than defining A0PP, we will define the quantum class SBQP = A0PP.
SBQP is the class of decision problems for which there exists a quantum polynomial time algorithm
which, on input x ∈ {0, 1}∗, accepts in the YES case with probability at least 2 ·2−p(|x|), and accepts in
the NO case with probability at most 2−p(|x|), for some polynomial p. Note that it is strongly believed
that SBQP = A0PP 6= PP, since equality would collapse PH.

2. QMA ⊆ PQMA[log] ⊆ PP. Here, PQMA[log] is the set of decision problems solved by a P machine which
can make at most O(log n) (adaptive) queries to a QMA oracle. Again, this strictly separates QMA
from PP, in the sense that it is unlikely that QMA = PQMA[log]. This is because the latter contains
both QMA and co-QMA (the complement of QMA), and so QMA = PQMA[log] would have the unlikely
implication that QMA ⊇ co-QMA.

Exercise. Why does co-QMA ⊆ PQMA[log] hold?

While these two upper bounds on QMA are likely stronger than PP, we now close the lecture by showing the
weaker bound QMA ⊆ PP; this latter containment follows via a simple application of strong error reduction.

3.2 Using strong error reduction to show QMA ⊆ PP

Theorem 5. QMA ⊆ PP.

Proof idea. The proof idea is most easily grasped by using it to show NP ⊆ PP. For this, suppose we
have a 3-SAT input formula φ : {0, 1}n 7→ {0, 1}. To put NP in PP, our goal is to show that there exists a
probabilistic polynomial-time algorithm A which, given φ, accepts with probability strictly larger than 1/2 if
φ is satisfiable, and accepts with probability at most 1/2 otherwise. The approach for doing so is simple — if
and only if φ is satisfiable, it has a satisfying assignment x; so, A randomly picks an assignment y ∈ {0, 1}n,
and outputs φ(y).

Exercise. Prove that if φ is satisfiable, A accepts with probability at least 1/2n. On the other hand, if φ
is unsatisfiable, A accepts with probability 0. Why is this enough to imply 3-SAT ∈ PP?

Proof of Theorem 5. We shall show QMA ⊆ PQP, for PQP defined essentially identically to PP except with
a P-uniform quantum circuit family in place of a Turing machine. It is known that PQP = PP, whose proof
we omit here.

Let A = (Ayes, Ano, Ainv) be a QMA promise problem, and x ∈ {0, 1}n an input. The overall proof idea is
the same as in the classical case — the PQP machine A simply “guesses” a quantum proof |ψ〉 ∈ (C2)⊗p(n),
feeds it into verifier Qn, and outputs Qn’s answer. Formally, to model a “random proof” |ψ〉, A instead
feeds Qn the maximally mixed state I/2p(n) ∈ L((C2)⊗p(n)).

Exercise. Why does 1
2p(n) I correctly model a random pure state |ψ〉 ∈ (C2)⊗p(n)?

Recall we may now write the acceptance probability of Qn on proof I/2p(n) as (for POVM Px defined as in
Equation (1))

Pr[accept] = Tr

(
Px ·

I

2p(n)

)
=

1

2p(n)
Tr(Px).

Exercise. Recall that Px � 0, and that Tr(Px) is the sum of all eigenvalues of Px. Why does the Pr[accept]
above not suffice to separate YES from NO cases of A?

As the exercise above shows, this naive idea alone does not work. Rather, we must first use strong error
reduction to amplify the completeness and soundness parameters of Qn. Specifically, recall that Qn takes in
p(n) proof qubits, for some polynomial p. For any polynomial r, Theorem 3 says we may map Qn to a new
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circuit Rn which still takes in p(n) proof qubits, but has completeness and soundness parameters 1− 2−r(n)

and 2−r(n), respectively. This now suffices to complete the proof.

Exercise. Prove that for sufficiently large fixed r, feeding I/2n into Rn and outputting its answer suffices
to decide in PQP whether x ∈ Ayes or x ∈ Ano. More formally, let PRx denote the POVM for verifier Rn
(c.f. Equation (1)). Prove that:

• If x ∈ Ayes, then 1
2p(n) Tr(PRx ) ≥ 1

2p(n) − 1
2p(n)+r(n) .

• If x ∈ Ano, then 1
2p(n) Tr(PRx ) ≤ 1

2r(n) .

What choice of r hence suffices to distinguish YES from NO cases in PQP? (Hint: You do not need to use
the precise structure of PRx ; the relationship between the optimal probability of acceptance of Rn and the
eigenvalues of PRx suffices.)

Exercise. Would the approach above work if we used weak error reduction instead of strong error reduc-
tion? Why or why not?
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